Number of points on certain hyperelliptic curves defined over finite fields

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rational Points on Certain Hyperelliptic Curves over Finite Fields

Let K be a field, a, b ∈ K and ab 6= 0. Let us consider the polynomials g1(x) = x n + ax + b, g2(x) = x n + ax + bx, where n is a fixed positive integer. In this paper we show that for each k ≥ 2 the hypersurface given by the equation

متن کامل

Counting Points on Hyperelliptic Curves over Finite Fields

We describe some algorithms for computing the cardinality of hyperelliptic curves and their Jacobians over finite fields. They include several methods for obtaining the result modulo small primes and prime powers, in particular an algorithm à la Schoof for genus 2 using Cantor’s division polynomials. These are combined with a birthday paradox algorithm to calculate the cardinality. Our methods ...

متن کامل

The number of rational points of hyperelliptic curves over subsets of finite fields

Abstract. We prove two related concentration inequalities concerning the number of rational points of hyperelliptic curves over subsets of a finite field. In particular, we investigate the probability of a large discrepancy between the numbers of quadratic residues and non-residues in the image of such subsets over uniformly random hyperelliptic curves of given degrees. We find a constant proba...

متن کامل

Rational Points on Curves over Finite Fields

Preface These notes treat the problem of counting the number of rational points on a curve defined over a finite field. The notes are an extended version of an earlier set of notes Aritmetisk Algebraisk Geometri – Kurver by Johan P. Hansen [Han] on the same subject. In Chapter 1 we summarize the basic notions of algebraic geometry, especially rational points and the Riemann-Roch theorem. For th...

متن کامل

Counting Points on Curves over Finite Fields

Stanford University) Abstract: A curve is a one dimensional space cut out by polynomial equations, such as y2=x3+x. In particular, one can consider curves over finite fields, which means the polynomial equations should have coefficients in some finite field and that points on the curve are given by values of the variables (x and y in the example) in the finite field that satisfy the given polyn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Finite Fields and Their Applications

سال: 2008

ISSN: 1071-5797

DOI: 10.1016/j.ffa.2006.12.007